Dispersive hydrodynamics in viscous fluid conduits.
نویسندگان
چکیده
The evolution of the interface separating a conduit of light, viscous fluid rising buoyantly through a heavy, more viscous, exterior fluid at small Reynolds numbers is governed by the interplay between nonlinearity and dispersion. Previous authors have proposed an approximate model equation based on physical arguments, but a precise theoretical treatment for this two-fluid system with a free boundary is lacking. Here, a derivation of the interfacial equation via a multiple scales, perturbation technique is presented. Perturbations about a state of vertically uniform, laminar conduit flow are considered in the context of the Navier-Stokes equations with appropriate boundary conditions. The ratio of interior to exterior viscosities is the small parameter used in the asymptotic analysis, which leads systematically to a maximal balance between buoyancy driven, nonlinear self-steepening and viscous, interfacial stress induced, nonlinear dispersion. This results in a scalar, nonlinear partial differential equation describing large amplitude dynamics of the cross-sectional area of the intrusive fluid conduit, in agreement with previous derivations. The leading order behavior of the two-fluid system is completely characterized in terms of the interfacial dynamics. The regime of model validity is characterized and shown to agree with previous experimental studies. Viscous fluid conduits provide a robust setting for the study of nonlinear, dispersive wave phenomena.
منابع مشابه
Observation of Dispersive Shock Waves, Solitons, and Their Interactions in Viscous Fluid Conduits.
Dispersive shock waves and solitons are fundamental nonlinear excitations in dispersive media, but dispersive shock wave studies to date have been severely constrained. Here, we report on a novel dispersive hydrodynamic test bed: the effectively frictionless dynamics of interfacial waves between two high viscosity contrast, miscible, low Reynolds number Stokes fluids. This scenario is realized ...
متن کاملInteractions of large amplitude solitary waves in viscous fluid conduits
The free interface separating an exterior, viscous fluid from an intrusive conduit of buoyant, less viscous fluid is known to support strongly nonlinear solitary waves due to a balance between viscosity-induced dispersion and buoyancy-induced nonlinearity. The overtaking, pairwise interaction of weakly nonlinear solitary waves has been classified theoretically for the Korteweg–de Vries equation...
متن کاملAbstract Submitted for the DFD15 Meeting of The American Physical Society Controlling Wavebreaking in a Viscous Fluid Conduit1 DALTON
Submitted for the DFD15 Meeting of The American Physical Society Controlling Wavebreaking in a Viscous Fluid Conduit1 DALTON ANDERSON, MICHELLE MAIDEN, MARK HOEFER, University of Colorado Boulder — This poster will present a new technique in the experimental investigation of dispersive hydrodynamics. In shallow water flows, internal ocean waves, superfluids, and optical media, wave breaking can...
متن کاملDissipative hydrodynamics and heavy ion collisions
Space-time evolution and subsequent particle production from minimally viscous (η/s=0.08) QGP fluid is studied using the 2nd order Israel-Stewart’s theory of dissipative relativistic fluid. Compared to ideal fluid, energy density or temperature evolves slowly in viscous dynamics. Particle yield at high pT is increased. Elliptic flow on the other hand decreases in viscous dynamics. Minimally vis...
متن کاملPositive Solutions to Singular Second and Third Order Differential Equations for Quantum Fluids
We analyze a quantum trajectory model given by a steady-state hydrodynamic system for quantum fluids with positive constant temperature in bounded domains for arbitrary large data. The momentum equation can be written as a dispersive thirdorder equation for the particle density where viscous effects are incorporated. The phenomena that admit positivity of the solutions are studied. The cases, o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 88 2 شماره
صفحات -
تاریخ انتشار 2013